Over many years individuals have endeavoured to measure absorbed radiation dose distributions using gels. As long ago as 1950, the radiation-induced colour change in dyes was used to investigate radiation doses in gels.Day M J and Stein G 1950 Chemical effects of ionizing radiation in some gels Nature 166 146– 7 Further, in 1957 depth doses of photons and electrons in agar gels were investigated using spectrophotometry.Andrews H L, Murphy R E and LeBrun E J 1957 Gel dosimeter for depth dose measurements Rev Sci Instrum 28 329–32 Gel dosimetry today however, is founded mainly on the work of Gore et al who in 1984Gore J C, Kang Y S and Schulz R J 1984 Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging Phys Med Biol 29 1189–97 demonstrated that changes due to ionising radiation in Fricke dosimetry solutions,Fricke H and Morse S 1927 The chemical action of roentgen rays on dilute ferrous sulphate solutions as a measure of radiation dose Am J Roentgenol Radium Therapy Nucl Med 18 430–2 developed in the 1920s, could be measured using nuclear magnetic resonance (NMR).
Gel dosimeters generally consist of two types; Fricke and polymer gel dosimeters and are usually evaluated or 'read-out' using magnetic resonance imaging (MRI), optical computer tomography (CT), x-ray CT or ultrasound.
Since 1999 the DosGel and IC3DDose Conference Series on gel dosimetry has been held at various international venues.
In 1992 a new gel dosimetry formulation was proposed by Maryanski et al,Maryanski M J, Gore J C and Schulz R J 1992 3-D radiation dosimetry by MRI: solvent proton relaxation enhancement by radiation-controlled polymerisation and cross-linking in gels Proc Intl Soc Mag Reson Med (New York) which was based on the polymerisation of acrylamide and N,N’-methylene-bis-acrylamide (bis) monomers infused in an aqueous agarose matrix. This system was given the acronym BANANA due to the use of the chemical components (bis, acrylamide, nitrous oxide and agarose).Maryanski M J, Gore J C, Kennan R P and Schulz R J 1993 NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI Magn Reson Imaging 11 253-58 This type of gel dosimeter did not have the associated diffusion problem of Fricke gels and was shown to have a relatively stable post-irradiation dose distribution. The polymerisation reaction occurred by cross-linking of the monomers induced by the free radical products of water radiolysis. In 1994 the BANANA formulation was refinedMaryanski M J, Schulz R J, Ibbott G S, Gatenby J C, Xie J, Horton D and Gore J C 1994 Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter Phys Med Biol 39 1437-55 by replacing agarose with gelatine and given the acronym BANG (bis, acrylamide, nitrogen and aqueous gelatine), the first of a series of new polymer gel formulations. In 1994 this formulation was patentedMaryanski M J, Gore J C and Schulz R 1994 Three-dimensional detection, dosimetry and imaging of an energy field by formation of a polymer in a gel US Patent 5321357 and became commercially available through MGS Research Inc. as BANG®. Subsequently, due to the naming of the commercial product, PAGBaldock C, Burford R P, Billingham N, Wagner G S, Patval S, Badawi R D and Keevil S F 1998 Experimental procedure for the manufacture and calibration of polyacrylamide gel (PAG) for magnetic resonance imaging (MRI) radiation dosimetry Phys Med Biol 43 695-702 became the polymer gel dosimeter acronym of choice for most authors. Numerous authors subsequently published results of work investigating different compositions and formulations of polymer gel dosimeters which were summarised by Lepage et al.Lepage M, Jayasekera M, Bäck S Å J, Baldock C 2001 Dose resolution optimization of polymer gel dosimeters using different monomers Phys Med Biol 46 2665-80
Although polymer-type dosimeters did not have the diffusion limitations of Fricke-type gel dosimeters, there was another significant limitation in their use. Due to the nature of their free radical chemistry, polymer gel dosimeters were susceptible to atmospheric oxygen inhibition of the polymerisation processes. As a result, these gel dosimeters had to be manufactured in an oxygen-free environment,Baldock C, Burford R P, Billingham N, Wagner G S, Patval S, Badawi R D and Keevil S F 1998 Experimental procedure for the manufacture and calibration of polyacrylamide gel (PAG) for magnetic resonance imaging (MRI) radiation dosimetry Phys Med Biol 43 695-702De Deene Y, De Wagter C, Van Duyse B, Derycke S, De Neve W and Achten E 1998 Three- dimensional dosimetry using polymer gel and magnetic resonance imaging applied to the verification of conformal radiation therapy in head-and-neck cancer Radiotherapy and Oncology 48 283–291 such as in a glove box pumped with nitrogen gas. Along with the use of potentially toxic chemicals,Baldock C and Watson S 1999 Risk assessment for the manufacture of radiation dosimetry polymer gels in DOSGEL 1999 Proceedings of the 1st International Workshop on Radiation Therapy Gel Dosimetry (Lexington, USA) Eds L J Schreiner and C Audet this was a significant limitation in the introduction of gel dosimetry into the clinic.
During this period a number of studies were undertaken to investigate the clinical applications of radiological tissue-equivalentKeall P, Baldock C, 1999. A theoretical study of the radiological properties and water equivalence of three types of gels used for radiation dosimetry Australas Phys Eng Sci Med 22 85-91Venning AJ, Nitschke KN, Keall PJ, Baldock C, 2005. Radiological properties of normoxic polymer gel dosimeters Med Phys 32 1047-1053Brown S, Venning A, De Deene Y, Vial P, Oliver L, Adamovics J and Baldock C 2008 Radiological properties of the PRESAGE and PAGAT polymer dosimeters Applied Radiation and Isotopes 66 (12) 1970-1974 PAG-type polymer gel dosimeters using MRI.Maryanski M J, Gore J C, Kennan R P and Schulz R J 1993 NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI Magn Reson Imaging 11 253-58Maryanski M J, Schulz R J, Ibbott G S, Gatenby J C, Xie J, Horton D and Gore J C 1994 Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter Phys Med Biol 39 1437-55Ibbott G S, Maryanski M J, Eastman P, Holcomb S D, Zhang Y, Avison R G, Sanders M and Gore J C 1997 Three-dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of BANG polymer gel dosimeters Int J Radiat Oncol Biol Phys 38 1097-103Oldham M, Baustert I, Lord C, Smith T A D, McJury M, Warrington A P, Leach M O and Webb S 1998a An investigation into the dosimetry of a nine-field tomotherapy irradiation using BANG-gel dosimetry Phys Med Biol 43 1113–32Low D A, Harms W B, Mutic S and Purdy J A 1998 A technique for the quantitative evaluation of dose distributions Med Phys 25 656-61 De Deene et alDe Deene Y, De Wagter C, Van Duyse B, Derycke S, Mersseman B, De Gersem W, Voet T, Achten E and De Neve W 2000 Validation of MR-based polymer gel dosimetry as a preclinical three-dimensional verification tool in conformal radiotherapy Magn Reson Med 43 116–25 undertook an investigation into the overall accuracy of an anthropomorphic polymer gel dosimetry phantom for the verification of conformal radiotherapy treatments. It was established that significant issues relating to the accuracy of this dosimetry technique were a result of oxygen inhibition in the polymer gel and MRI imaging artefacts.
Authors continued to investigate clinical aspects of polymer gel dosimetry using MRI including conformal therapy, IMRT and IMAT,Cosgrove V P, Murphy P S, McJury M, Adams E J, Warrington A P, Leach M O and Webb S 2000 The reproducibility of polyacrylamide gel dosimetry applied to stereotactic conformal radiotherapy Phys Med Biol 45 1195-210Vergote K, De Deene Y, Claus F, De Gersem W, Van Duyse B, Paelinck L, Achten E, De Neve W, De Wagter C 2003 Application of monomer/polymer gel dosimetry to study the effects of tissue inhomogeneities on intensity-modulated radiation therapy (IMRT) dose distributions Radiotherapy and Oncology 67 119-28Duthoy W, De Gersem W, Vergote K, Coghe M, Boterberg T, De Deene Y, De Wagter C, Van Belle S and De Neve W 2003 Whole abdominopelvic radiotherapy (WAPRT) using intensity- modulated arc therapy (IMAT): First clinical experience Int J Radiation Oncology Biol Phys 57 1019-32Love P A, Evans P M, Leach M O and Webb S 2003 Polymer gel measurement of dose homogeneity in the breast: comparing MLC intensity modulation with standard wedged delivery Phys Med Biol 48 1065-74Vergote K, De Deene Y, Duthoy W, De Gersem W, De Neve W, Achten E 2004 Validation and application of polymer gel dosimetry for the dose verification of an intensity-modulated arc therapy (IMAT) treatment Phys Med Biol 49 287-305Duthoy W, De Gersem W, Vergote K, Boterberg T, Derie C, Smeets P, De Wagter C and De Neve W 2004 Clinical implementation of intensity-modulated arc therapy (IMAT) for rectal cancer Int J Radiation Oncology Biol Phys 60 794-806Sandilos P, Angelopoulos A, Baras P, Dardoufas K, Karaiskos P, Kipouros P, Kozicki M, Rosiak J M, Sakelliou L, Seimenis I and Vlahos L 2004 Dose verification in clinical IMRT prostate incidents Int J Radiation Oncology Biol Phys 59 1540-7 stereotactic radiosurgery,Ertl A, Berg A, Zehetmayer M and Frigo P 2000 High-resolution dose profile studies based on MR imaging with polymer BANG gels in stereotactic radiation techniques Magn Reson Imaging 18 343-349Grebe G, Pfaender M, Roll M and Luedemann L 2001 Dynamic arc radiosurgery and radiotherapy: Commissioning and verification of dose distributions Int J Radiat Oncol Biol Phys 49 1451-60Pappas E, Seimenis I, Angelopoulos A, Georgolopoulou P, Kamariotaki Paparigopoulou M, Maris T, Sakelliou L, Sandilos P and Vlachos L 2001 Narrow stereotactic beam profile measurements using N-vinylpyrrolidone based polymer gels and magnetic resonance imaging Phys Med Biol 46 783-97Audet C, Hilts M, Jirasek A and Duzenli C 2002 CT gel dosimetry technique: Comparison of a planned and measured 3D stereotactic dose volume J Appl Clin Med Phys 3 110-8Novotny J Jr, Dvorak P, Spevacek V, Tintera J, Novotny J, Cechak T and Liscak R 2002 Quality control of the stereotactic radiosurgery procedure with the polymer-gel dosimetry Radiother Oncol 63 223-30Scheib S G and Gianolini S 2002 Three-dimensional dose verification using BANG gel: a clinical example J Neurosurg 97 582-7Watanabe Y, Perera G M and Mooij R B 2002 Image distortion in MRI-based polymer gel dosimetry of Gamma Knife stereotactic radiosurgery systems Med Phys 29 797-802Karaiskos P, Petrokokkinos L, Tatsis E, Angeloupolos A, Baras P, Kozicki M, Papagiannis P, Rosiak J M, Sakelliou L, Sandilos P and Vlachos L 2005 Dose verification of single shot gamma knife applications using VIPAR polymer gel and MRI Phys Med Biol 50 1235-50 brachytherapy,Farajollahi A R, Bonnett D E, Ratcliffe A J, Aukett R J and Mills J A 1999 An investigation into the use of polymer gel dosimetry in low dose rate brachytherapy Br J Radiol 72 1085–92Wuu C-S, Schiff P, Maryanski MJ, Liu T, Borzillary S, and Weinberger J 2003 Dosimetry study of Re-188 liquid balloon for intravascular brachytherapy using polymer gel dosimeters and laser- beam optical CT scanner Med Phys 30 132-7 low energy X-rays,Boudou C, Briston M C, Corde S, Adam J F, Ferrero C, Esteve F and Elleaume H 2004 Synchrotron stereotactic radiotherapy: dosimetry by Fricke gel and Monte Carlo simulations Phys Med Biol 49 5135-44 high-LET and proton therapy,Ramm U, Weber U, Bock M, Kramer M, Bankamp A, Damrau M, Thilmann C, Bottcher H D, Schad L R, and Kraft G 2000 Three-dimensional BANG gel dosimetry in conformal carbon ion radiotherapy Phys Med Biol 45 N95-N102Jirasek A I and Duzenli C 2002 Relative effectiveness of polyacrylamide gel dosimeters applied to proton beams: Fourier transform Raman observations and track structure calculations Med Phys 29 569-77Heufelder J, Stiefel S, Pfaender M, Ludemann L, Grebe G and Heese J 2003 Use of BANG polymer gel for dose measurements in a 68 MeV proton beam Med Phys 30 1235-40Gustavsson H, Back S A J, Medin J, Grusell E and Olsson L E 2004 Linear energy transfer dependence of a normoxic polymer gel dosimeter investigated using proton beam absorbed dose measurements Phys Med Biol 49 3847-55 boron capture neutron therapyFarajollahi A R, Bonnett D E, Tattam D and Green S 2000 The potential use of polymer gel dosimetry in boron neutron capture therapy Phys Med Biol 45 N9–N14Gambarini G, Colli V, Gay S, Petrovich C, Pirola L and Rosi G 2004 In-phantom imaging of all dose components in boron neutron capture therapy by means of gel dosimeters Applied Radiation and Isotopes 61 759–763 and tissue inhomogeneities.Vergote K, De Deene Y, Claus F, De Gersem W, Van Duyse B, Paelinck L, Achten E, De Neve W, De Wagter C 2003 Application of monomer/polymer gel dosimetry to study the effects of tissue inhomogeneities on intensity-modulated radiation therapy (IMRT) dose distributions Radiotherapy and Oncology 67 119-28Love P A, Evans P M, Leach M O and Webb S 2003 Polymer gel measurement of dose homogeneity in the breast: comparing MLC intensity modulation with standard wedged delivery Phys Med Biol 48 1065-74
The fundamental science underpinning polymer gel dosimetry was reviewed along with the various 'read-out' and evaluation techniques and clinical dosimetry applications in the 2010 Topical Review publication by Clive Baldock et al.Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ 2010. Polymer gel dosimetry. Physics in Medicine and Biology 55 (5) R1
The aim of the first workshop was to bring together individuals, both researchers and users, with an interest in the application of 3-dimensional radiation dosimetry techniques in the treatment of cancer, with a mix of presentations from basic science to clinical applications. This has remained an objective for all of the conferences. One rationale of DosGel 99 was stated as supporting the increasing clinical implementation of gel dosimetry, as the technique appeared, at that time, to be leaving the laboratories of gel dosimetry enthusiasts and entering clinical practice. Clearly by labelling the first workshop as the 1st, there was a vision of a continuing series, which has been fulfilled. On the other hand, the expectation of widespread clinical use of gel dosimetry has perhaps not been what was hoped for and anticipated. Nevertheless, the rapidly increasing demand for advanced high-precision 3D radiotherapy technology and techniques has continued apace. The need for practical and accurate 3D dosimetry methods for development and quality assurance has only increased. By the 6th meeting, held in South Carolina in 2010, the Conference Scientific Committee recognised the wider developments in 3D systems and methods and decided to widen the scope, whilst keeping the same span from basic science to applications. This was signalled by a change of name from DosGel to IC3DDose, a name that has continued to the latest conference, the 11th IC3DDose conference, held virtually in May 2021.
|
|